4,634 research outputs found

    Critical Quantum Chaos in 2D Disordered Systems with Spin-Orbit Coupling

    Full text link
    We examine the validity of the recently proposed semi-Poisson level spacing distribution function P(S), which characterizes `critical quantum chaos', in 2D disordered systems with spin-orbit coupling. At the Anderson transition we show that the semi-Poisson P(S) can describe closely the critical distribution obtained with averaged boundary conditions, over Dirichlet in one direction with periodic in the other and Dirichlet in both directions. We also obtain a sub-Poisson linear number variance Σ2(E)≈χ0+χE\Sigma_{2}(E)\approx \chi_{0}+ \chi E, with asymptotic value χ≈0.07\chi\approx0.07. The obtained critical statistics, intermediate between Wigner and Poisson, is relevant for disordered systems and chaotic models.Comment: 4 pages with 5 figure

    Environment-Mediated Quantum State Transfer

    Full text link
    We propose a scheme for quantum state transfer(QST) between two qubits which is based on their individual interaction with a common boson environment. The corresponding single mode spin-boson Hamiltonian is solved by mapping it onto a wave propagation problem in a semi-infinite ladder and the fidelity is obtained. High fidelity occurs when the qubits are equally coupled to the boson while the fidelity becomes smaller for nonsymmetric couplings. The complete phase diagram for such an arbitrary QST mediated by bosons is discussed.Comment: 6 pages and 5 figure

    Superconductivity-Induced Anderson Localisation

    Full text link
    We have studied the effect of a random superconducting order parameter on the localization of quasi-particles, by numerical finite size scaling of the Bogoliubov-de Gennes tight-binding Hamiltonian. Anderson localization is obtained in d=2 and a mobility edge where the states localize is observed in d=3. The critical behavior and localization exponent are universal within error bars both for real and complex random order parameter. Experimentally these results imply a suppression of the electronic contribution to thermal transport from states above the bulk energy gap.Comment: 4 pages, revtex file, 3 postscript figure

    Multifractal properties of critical eigenstates in two-dimensional systems with symplectic symmetry

    Full text link
    The multifractal properties of electronic eigenstates at the metal-insulator transition of a two-dimensional disordered tight-binding model with spin-orbit interaction are investigated numerically. The correlation dimensions of the spectral measure D~2\widetilde{D}_{2} and of the fractal eigenstate D2D_{2} are calculated and shown to be related by D2=2D~2D_{2}=2\widetilde{D}_{2}. The exponent η=0.35±0.05\eta=0.35\pm 0.05 describing the energy correlations of the critical eigenstates is found to satisfy the relation η=2−D2\eta=2-D_{2}.Comment: 6 pages RevTeX; 3 uuencoded, gzipped ps-figures to appear in J. Phys. Condensed Matte
    • …
    corecore